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Parallel Algorithms for the Assignment and Minimum-Cost
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James B. Orlin * Clifford Stein t
Sloan School of Management Laboratory for Computer Science
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Abstract

Let G = (V, E) be a network for an assignment problem with 2n nodes and m

edges, in which the largest edge cost is C. Recently the class of instances of

bipartite matching problems has been shown to be in RNC provided that C is

O(logk n) for some fixed k. We show how to use scaling so as to develop an

improved parallel algorithm and show that bipartite matching problems are in

the class RNC provided that C = O(n l°og ") for some fixed k. We then generalize

these results to minimum-cost flow problems. Let U be an upper bound on the

capacities of the edges and on the largest demand. We show that the minimum-

cost flow problem is in the class RNC, provided that log(C + U) = O(logk n)

for some fixed k. Thus the minimum-cost flow problem is in the class RNC

even when the magnitude of the costs and capacities are allowed to grow faster

than any polynomial in n. The key to our approach is to reduce the number

of processors needed from an amount that is proportional to the magnitude of

the largest edge cost to an amount that is independent of the magnitude of the

largest edge cost. The tradeoff is an increase in the running time that grows

linearly in log(C + U).

Keywords: matching, assignment, parallel algorithm, scaling, minimum-cost flow
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1 Introduction

Karp, Upfal, and Widgerson [11], and Mulmuley, Vazirani, and Vazirani [14], have recently

developed randomized NC (RNC)' parallel algorithms for the minimum-cost perfect match-

ing problem, assuming that the input is given in unary. For both of these algorithms, the

number of processors needed is proportional to the magnitude of the largest number. In

this note, we show how to convert these algorithms into algorithms that use a number of

processors that is independent of the magnitude of the largest number, provided that the

graph is bipartite. As a tradeoff, we get an increase in the time spent that is proportional

to the logarithm of the magnitude of the largest edge cost. Let n be the number of nodes

in the graph, and C the largest cost in the matching problem. If C = Q(n1+), we get

algorithms that do less work, where work is the product of the number of processors used

and the time spent. Assuming that C = O(n l °g
n) for some constant k, our algorithms are

in RNC. We achieve these results by using scaling, which reduces the problem of finding a

matching in a graph with large edge costs to the problem of finding a sequence of matchings

in a sequence of graphs, each of which has small edge costs. The algorithm is similar to the

sequential algorithms of [7] and [8], as it iteratively finds an assignment and dual variables

and then uses these to ensure that during the next iteration the graph contains a matching

of small total cost. By iterating this algorithm on an appropriately derived graph, we also

obtain improved results for the minimum-cost flow problem.

Our model of computation is a parallel random-access machine (PRAM) [5]. We define

the work done by a parallel algorithm as the product of the number of processors used and

the time spent.

2 Preliminaries

Let G = (V, E, c) be an undirected bipartite graph with node set V, edge set E, and an

integral cost c(v, w) associated with each edge (v, w). We will denote the two sets of nodes

in the bipartition as VI and V2, and let n = Ivii = IV21 and ma = IEl.

A matching on a graph is a set M of edges, such that each node is incident to no more

than one edge from M. A perfect matching is a matching in which every node is incident

to exactly one matched edge. If the edges have costs, the cost of a matching is the sum of

the costs of the edges in the matching. A minimum-cost perfect matching (MCPM) is the

perfect matching with the smallest possible cost. In a bipartite graph, an MCPM is also
1NC is the class of algorithms that, on input of size n, use nk t processors and O(logk2 n) time, for some

constants k and k2. RNC algorithms are NC algorithms that allow each processor to generate an O(log n)
bit random number at each step in the computation and return the correct answer with probability greater
than 1/2.
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called an assignment. It will be convenient to associate an integer-valued dual variable d(v)

with each node v. This allows us to define d(v, w), the reduced cost of edge (v, w), with

respect to dual variables d by Cd(V, W) = c(v, w) + d(v) - d(w). Let M be a matching. We

say that a set of dual variables is tight if

Cd(V,W) > 0 V(v,w) E E(1)

Cd(V,W) =0 V(v,w) E M (2)

The first algorithm for the assignment problem was Kuhn's Hungarian algorithm [12].

Implemented with Fibonacci heaps [6], this algorithm runs in O(nm + n2 log n) time, which

remains the fastest strongly polynomial algorithm for the assignment problem. Gabow and

Tarjan [8] have developed an algorithm that runs in O(v/rmlog(nC)) time. There are no

known NC algorithms for the assignment problem; however, there are RNC algorithms

under the assumption that the input is given in unary. The first RNC algorithm under

this assumption was given by Karp, Upfal, and Wigderson [11]. An implementation of

this algorithm by Galil and Pan [9] uses (n + C')M(n) processors and O(logn log2 (nC'))

time where C' is an upper bound on the maximum cost of any matching, and M(n) is

the minimum number of processors needed to multiply two n x n matrices. Currently

M(n) = O(n2.3 7 6) [2], and trivially, M(n) = (n 2). Subsequently, a faster algorithm was

discovered by Mulmuley, Vazirani, and Vazirani [14], that finds an assignment in O(log2 n)

time using nmCM(n) processors, where C is the largest edge cost in the input graph. As

neither one of these algorithms does less work than the other on all graphs, we will give our

improvements relative to both of these algorithms.

3 A Scaling Algorithm

Our algorithm is a scaling algorithm, similar in general structure to the sequential matching

algorithm of Gabow and Tarjan [8]. The algorithm proceeds in log C iterations. At the

beginning of each iteration, one bit is added to the costs and dual variables. Then a

perfect matching and tight dual variables are found on the graph with edges of reduced cost

no greater than 2n. The new dual variables are added to the old ones and the iteration

terminates. The details of the algorithm appear in Figure 1.

The algorithm of [8] works in a similar manner, except that in their algorithm each

iteration involves finding only an approximate matching. At each step, we find an exact

matching and tight dual variables. By working with reduced costs at each iteration, we

ensure that not only is the cost of the new matching close to that of the old matching,

but also that the magnitude of the edge costs used in each iteration is small. Thus we can
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Input: G = (V, E,5 ) an undirected bipartite graph with bipartition V1 and V2 and cost
:(v, w) on edge (v, w). Assume that G contains a perfect matching.
Output: A minimum-cost perfect matching M.
1 d(v)- O 0 v E V2.

c(v, w) - 0 V(v, w) E E.
Let C = max(V,)EE{l(v, w)l}.

2 For I = 1 to log 2 C]

3 d(v) - 2d(v)Vv E V.
c(v, w) - 2c(v, w) + (the Ith signed bit of (v, w)) V(v, w) E E.

4 Let E' = {(v, ) (v, w) E E and Cd(V, W) < 2n}.
5 Compute M, a MCPM in G' = (V, E', Cd).

6 Compute tight dual variables for G' with respect to matching M using costs Cd. Let
A(v) be the dual variable associated with v.

7 d(v) d(v)+ (v) Vv E V.

8 Output M, a minimum-cost perfect matching.

Figure 1: Algorithm ASSIGNMENT.

reduce the assignment problem to a series of logC assignment problems, each in a graph

with small edge costs.

Before proceeding to analyze our algorithm, we address the issue of finding tight duals.

In general, given an optimal flow for a minimum-cost flow problem, a single shortest-path

computation suffices to find tight dual variables (see, for example [1]). As specialized to

the assignment problem the algorithm is as follows. First create a directed residual network

G' = (V', E') such that

· for each (v, w) E E, there is an edge (v, w) E E' with cost c(v, w),

· for each (v, w) E M, there is an edge (w, v) E E' with cost -c(v, w),

· a new node s E V1, and for each node w E V2, an edge (s, w) of cost nC.

Now let d(v) be the shortest path distance from s to all other nodes. It is well known that

the d(v) that result are tight dual variables for the matching problem.

We now demonstrate that Algorithm ASSIGNMENT described in Figure 1 is correct and

efficient. The key to the efficiency of this algorithm is that when we find a matching in step

4, we may ignore edges with reduced cost greater than 2n. It remains to be shown that this

does not change the value of the MCPM.

Lemma 3.1 The graph G = (V, E', Cd) formed in step 4 of algorithm Assignment always

contains a MCPM of total cost no more than n. Further, V(v, w) E E, Cd(V, w) > -1.

Proof: We will prove this by induction on the number of executions of step 4. During the

first execution, all reduced edge costs are either -1, 0 or 1, so the lemma is true. Assume
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that it is true after step 4 on iteration I - 1. Then, at the beginning of the loop, the costs

Cd are tight with respect to A. Because for all edges (v, w)

Cd(v, w) + A(v) - a(w) = (c(v, w) + (d(v) + a(v)) - (d(w) + (w))

it is also true that c is tight with respect to d + A.

Thus, in the graph G = (V, E, c), the reduced cost of the edges of M with respect to

d + A is 0 and the reduced cost of every edge is non-negative. Let d -- d + A. Now consider

the effect of adding a new bit of cost and updating the dual variables in Step 3 of iteration I.

After multiplying all dual variables by 2 and all costs by 2, the reduced cost of each edge is

still non-negative and the reduced cost of each edge in M is still 0. After adding a new-bit

of cost, each edge has reduced cost greater than or equal to -1, and each edge in M has

reduced cost at most 1. Therefore, the sum of the cost of the edges in M is at most n. ·

Corollary 3.2 In the graph G = (V,E',Cd) formed in step 4 of algorithm Assignment,

there always exists a MCPM M in which Cd(V, W) < 2n V(v, w) E M.

Proof: Assume, to the contrary, that the MCPM contains an edge of value greater than 2n.

By Lemma 3.1 every other edge in the matching has at least -1. Therefore this matching

has value greater than 2n + (n - 1)(-1) > n + 1. But by Lemma 3.1, we know that there

exists a perfect matching of value at most n, therefore the one we have cannot be the

minimum one. ·

This leads to our main result.

Theorem 3.3 Let algorithm A be a randomized parallel algorithm for MCPM that uses

Cf(n, m) processors and O(logkn) time, where f(n, m) is a polynomial in n and m and k

is a non-negative integer. Using algorithm Assignment we can convert algorithm A into an

algorithm for MCPM that uses nf(n, m) + M(n) processors and O((logkn + log 2 n) logC)

time.

Proof: First we must verify that our algorithm actually finds a MCPM. From Corollary

3.2, we see that ignoring edges of reduced cost greater than 2n does not change the value

of the MCPM. Therefore, at each step we find a valid MCPM with respect to the reduced

costs. Because an MCPM with respect to the reduced costs has the same value as an MCPM

with respect to the actual costs, in the last iteration we really are finding an MCPM in

the graph where the current edge costs are the same as the edge costs of the input graph,

thus proving correctness. To derive the resource bounds, observe that whenever we find a

MCPM in step 5, C < 2n. Procedure Compute Tight Duals is dominated by the shortest



path computation that takes O(log 2 n) time on M(n) processors. All other steps in the

algorithm can be implemented in constant time on O(m + n) processors. Combining these

observations with the fact that there are only log C iterations of the main loop, the theorem

follows. ·

Corollary 3.4

* Algorithm Assignment, combined with the matching algorithm of [11], yields a ran-

domized parallel algorithm for computing an MCPM using n 2M(n) processors and

O(log3n log C) time.

* Algorithm Assignment, combined with the matching algorithm of [14], yields a ran-

domized parallel algorithm for computing an MCPM using n2mM(n) processors in

O(log2n log C) time.

Proof: Immediate from Theorem 3.3 and the algorithms in [11], [9], and [14]. 

Observe that our algorithm performs less work in the case that C = 1f(nl+c) for some

> 0. Further, our algorithm outperforms the old algorithms by a factor of O( ), so

as C gets larger, our algorithm becomes even more efficient than the previous algorithms.

We can extend this algorithm for a minimum-cost perfect matching to one that finds a

minimum-cost (not necessarily perfect) matching. (We allow the edge costs to be negative.

Otherwise, the optimum is the null matching.) Let G = (V, E, c) be a graph in which we

would like to find a minimum-cost matching. We employ the standard transformation of

using an augmented graph G' = (V, V1 x V2, c') where c'(v, w) = c(v, w) if (v, w) E E and

c'(v, wu) = 0 otherwise. It is easy to see that if M' is a minimum-cost perfect matching in

G', then M' U E is a to a minimum-cost matching in G.

Corollary 3.5 Given a graph G with maximum edge cost C, running algorithm Assignment

on G' yields an algorithm that finds a minimum-cost matching using n2 M(n) processors and

O(log 3 n log C) time or n4 M(n) processors and O(log2n log C) time.

4 Minimum Cost Flow Problems

Our technique also yields improved results for the minimum-cost flow problem. We assume

familiarity with the minimum-cost flow problem as we will only sketch the ideas needed to

extend the class of minimum-cost flow instances that are in RNC. We refer the reader to

[1, 13, 10] for more detail on minimum-cost flows.
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The first idea is to show that a general minimum-cost flow problem can be reduced to a

series of minimum-cost flow problems, each with small edge capacities. This fact is implicit

in the algorithm of Edmonds and Karp [4], here we make it explicit.

Lemma 4.1 Let P be a minimum-cost flow problem with n nodes, m edges, mazimum edge

cost C and mazimum edge capacity U. Then P can be, in NC, reduced to the solution of

O(log U) minimum-cost circulation problems, each with n nodes, m edges, mazimum edge

cost C and mazimum edge capacity m, and total supply m.

Proof: As in [4], we will introduce the capacities one bit at a time. We will now describe

how to convert a minimum-cost flow with respect to the first bits of the capacities to one

with respect to the first + 1 bits. Given a flow f that is minimum-cost with respect to

capacities u, we first double the flow and double the capacities. This still gives a minimum-

cost flow. Next we introduce a new bit of capacity. The new flow may no longer be

minimum-cost, but as is discussed in [4] it is "close" to a minimum-cost flow. We now

bring the edges "in-kilter" by saturating residual edges with negative reduced-cost. This

introduces supplies and demands at nodes, but since we have added at most one unit of

capacity to each edge, the sum of all the supplies is most m. Further, since no edge capacity

need be more than the sum of supplies, we can limit all edge capacities to m also. So we

now have a minimum-cost circulation problem with n nodes, m edges, maximum edge cost

C, maximum edge capacity m, and total supply m. We discuss below how to solve such

a problem. Since the initial capacities are at most U, we need repeat this process at most

[og U1 times. ·

We are now left with the problem of solving a minimum-cost circulation problem with

n nodes, m edges, maximum edge cost C and maximum edge capacity m, and total supply

m. Using a standard transformation, (see, for example [1], [15]), we can convert this capac-

itated flow problem into an uncapacitated transportation problem with m + n nodes, 2m

edges, maximum demand m and maximum cost C. We now use another standard transfor-

mation (see, for example [13]) that converts an uncapacitated transportation problem into

an assignment problem. If node v has demand d, we make d(v) copies of that node. For

each edge (v, w) we put an edge between every copy of v and every copy of w. This creates

an assignment problem with O(m 2) nodes, O(m 4) edges, and maximum edge cost C. We

now apply algorithm ASSIGNMENT to solve this problem.

Theorem 4.2 We can solve a minimum-cost flow problem using m 4 M(m2 ) processors and

O(log3 n log Clog U) time or using m 5M(m 2 ) processors and O(log2 n log C log U) time.

When C = fl(m 2), this compares favorably with the previous results of Cm2 M(m 2)

processors and O(log3 n log U) time or Cm3 M(m2) processors and O(log 2 n log U) time
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5 Conclusion

We have given an algorithm for the assignment problem that performs less work than the

previously known RNC algorithms. It has the appealing feature of having the number of

processors be independent of the size of the numbers. We have also extended the class

of assignment problems that can be solved in RNC. Previously, it was required that

C = O(nk) for some constant k. With these results, problems with C = O(no°g
k 
" ) for

some constant k, are now in RNC. We have also extended the class of minimum cost flow

problems that are in the class RNC.

In contrast with previous algorithms, the matching algorithm only works for bipartite

graphs. This is because the problem of finding tight dual variables in general graphs appears

to be no easier than actually finding a matching, even sequentially [3].
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